Publications

Ultralow-power in-memory computing based on ferroelectric memcapacitor network

Bobo Tian, Zhuozhuang Xie, Luqiu Chen, Shenglan Hao, Yifei Liu, Guangdi Feng, Xuefeng Liu, Hongbo Liu, Jing Yang, Yuanyuan Zhang, Wei Bai, Tie Lin, Hong Shen, Xiangjian Meng, Ni Zhong, Hui Peng, Fangyu Yue, Xiaodong Tang, Jianlu Wang, Qiuxiang Zhu, Yachin Ivry, Brahim Dkhil, Junhao Chu, Chungang Duan; Exploration 3 20220126 (2023).

 

Flexoelectric Domain Walls Originated from Structural Phase Transition in Epitaxial BiVO Films

Pao-Wen Shao, Heng-Jui Liu, Yuanwei Sun, Mei Wu, Ren-Ci Peng, Meng Wang, Fei Xue, Xiaoxing Cheng, Lei Su, Peng Gao, Pu Yu, Long-Qing Chen, Xiaoqing Pan ,Yachin Ivry, Yi-Chun Chen, Ying-Hao Chu;

Wiley-VCH GmbH Small 19 2107540(2022)

 

Is ferroelectric polarization spontaneous? The hidden effect of oxygen vacancies

Asaf Hershkovitz, E Hemaprabha , Doaa Khorshid, Liyang Ma, Shi Liu, Yachin Ivry; arXiv:2202.13442.

 

TOC FELE-SC SQUID Paper

Nonvolatile voltage-tunable ferroelectric-superconducting quantum interference memory devices

Mohammad Suleiman, Martin F. Sarott, Morgan Trassin, Maria Badarne and Yachin Ivry;   Applied Physics Letters 119 112601 (2021).

 

Giant Superelastic Piezoelectricity in Flexible Ferroelectric BaTiO3 Membranes.

Hemaprabha Elangovan, Maya Barzilay, Sahar Seremi, Noy Cohen, Yizhe Jiang, Lane W. Martin and Yachin Ivry; ACS Nano 14 5053 (2020)arXiv:2002.08166[physics.app-ph].

Integrable on-chip thin NbN SQUID

Thinnest SQUID made of a thin film:On-chip integrable planar NbN nanoSQUID with broad temperature and magnetic-field operation range

Itamar Holzman and Yachin Ivry; AIP Advances 9, 105028 (2019).

On AIP news: “A miniaturized SQUID fabricated on a silicon chip featured.”

Ferroelectric phase-transition dynamics.

Asaf Hershkovitz, Florian Johann, Maya Barzilay, Alon Hendler Avidor and Yachin Ivry; Acta Materiala (2020); arxiv.1903.12434 (2019).

In-situ homogeneous bending (4-point) for both AFM and XRD.

Rachel Onn Winestook, Cecile Saguy, Chun-Hao Ma, Ying-Hao Chu and Yachin Ivry; Advanced Electronic Materials 1900428 (2019). arxiv.1903.12341 (2019).

 

Gated SQUID

Local tuning of the order parameter in superconducting weak links: A zero-inductance nanodevice

Roni Winik, Itamar Holzman, Emanuele G. Dalla Torre , Eyal Buks and Yachin Ivry; Applied Physics Letters 112 122601 (2018)

 

a) Right-hand-side: 180-degree in-plane domains with average polarization ⟨P⟩ = 0 but nonzero average strain ⟨S⟩ (indicated by large arrows); (b) Left-hand-side: 90-degree in-plane domains with average strain ⟨S⟩ = 0 but nonzero average polarization ⟨P⟩, indicated by large arrow. This stress will produce domain wall motion. Both herringbone and closure domain structures produce ⟨S⟩ = ⟨P⟩ = 0.

Superdomain Dynamics in ferroelectric- ferroelastic films: switching, jamming and relaxation

James Floyd Scott, Asaf Hershkovitz, Yachin Ivry, H. Lu, Alexei Gruverman, J. M. Gregg; Applied Physics Reviews 4 041104 (2017)

pic11

 

Superconductor-superconductor bilayers for enhancing single-photon detection

Yachin Ivry, Jonathan J. Surick, Maya Barzilay, Chung-Soo Kim, Faraz Najafi, Estelle Kalfon-Cohen, Andrew D. Dane, Karl K. Berggren; arXiv:1703.08034; Nanotechnology 28 43 (2017)

EPFM photo of ferroelectric domains: amplitude (left), phase (center) and topography (right)

Towards Resolving Landauer’s Paradox Through Direct Observation of Multiscale Ferroelastic-Ferroelectric Interplay

Colm Durkan, Asaf Hershkovitz, DaPing Chu, James F. Scott, Yachin Ivry; arXiv:1608.03890

Universal behaviour in thin film superconductors.
Universal scaling of the critical temperature for thin films near the superconducting-to-insulating transition
Y. Ivry, CS Kim, A. E. Dane, D. De Fazio, A. McCaughan, Kr. A. Sunter and K. K. Berggren; Physical Review B 90, 214515 (2014).

High-resolution PFM image of ferroelectric (grayscale) and ferroelastic domains that are influenced by individual pinning sites (Adv Func Mat 2014)

Nano-Domain Pinning in Ferroelastic-Ferroelectrics by Extended Structural Defects
Y. Ivry, C. Durkan, DP. Chu and J.F. Scott; Adv. Funct. Mater. 2014, 24, 5567–5574
Ferroelectric domains can be used for high-frequency cellular communication-more than four times faster data transfer.
High-frequency programmable acoustic wave device realized through ferroelectric domain engineering
Y. Ivry, N. Wang and C. Durkan; Applied Physics Letters 104, 133505 (2014). 
V. vs. time
Superconducting-nanowire single-photon-detector linear array
Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry and K. K. Berggren; Applied Physics Letters 103 142602 (2013)
SNSPD membrane enables all-on-chip optics
Membrane-integrated superconducting nanowire single-photon detectors
F. Najafi, J. Mower, X. Hu, F. Bellei, P. Kharel, A. Dane, Y. Ivry, L. L. Cheong, K. Sunter, D. Englund and K. K Berggren; OSA Technical Digest, CLEO QELS QF1A.6 (2013)
integrated nano fiber and membrane sensor
On-fiber assembly of membrane-integrated superconducting-nanowire single-photon detectors
X. Hu, F. Najafi, J. Mower, F. Bellei, X. Mao, P. Kharel, Y. Ivry, A. McCaughan, L.L. Cheong, K.K. Berggren, D.R. Englund; OSA Technical Digest, Frontiers in Optics 2013, FW1C.5 (2013)
nanometric domain growth
Nucleation, growth, and control of ferroelectric-ferroelastic domains in thin polycrystalline films
Y. Ivry, J. F. Scott, E. K. H. Salje, and C. Durkan; Physical Review B 86 205428 (2012).
polarization controlled domain switching
Unexpected Controllable Pair-Structure in Ferroelectric Nanodomains
Y. Ivry, DP. Chu, J. F. Scott, E. K. H. Ekhard and C. Durkan; Nano Letters 11 4619 (2011). 
Picture6
Domains Beyond the Grain Boundary
Y. Ivry, DP. Chu, J.F. Scott, E.K.H. Ekhard and C. Durkan; Advanced Functional Materials 21 1827 (2011).
The role of ferroelastic domain in ferroelectric domain reversibility. Ferroelectric domains are reversible, while ferroelastic domains are a bit more tricky.
90° domain dynamics and relaxation in thin ferroelectric/ferroelastic films
Y. Ivry, N. Wang, DP. Chu, and C. Durkan; Physical Review B 81 174118 (2010). 

Engineered ferroelectric-ferroelastic vortex-like structure with four-fold symmetry (PRL 2010)

Flux Closure Vortexlike Domain Structures in Ferroelectric Thin Films
Y. Ivry, DP. Chu, J. F. Scott, and C. Durkan; Physical Review Letters 10, 207602 (2010). 
How to enhance the imaging capabilities of PFM?

Macro-domains (ferroelastic domains that span neighbouring grains) can be used to enhance pyroelectricity, increasing the sensitivity of IR detectors by an order of magnitude.

Enhanced pyroelectric effect in self-supported films of BaTiO3 with polycrystalline macrodomains
Y. Ivry, V. Lyahovitskaya, I. Zon, I. Lubomirsky, E. Wachtel and A. L. Roytburd; Applied Physics Letters 90 172905 (2007).